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A Martingale Approach to the Changepoint Problem 

Goran BROSTROM 

The changepoint problem for a binary sequence is considered. A test statistic based on recursive residuals is compared to the test 
statistic suggested by Pettitt. The new test statistic has more interesting properties for use in sequential testing. However, neither 
of  the two test statistics dominates the other. Sequential versions of  the martingale-based test, forward and reverse, are given and 
compared to other tests by means o f  a simulation study. The reverse martingale tests detect a shift earlier, i f  it is detected. The 
price to be paid is a slightly higher probability o f  not detecting a shift. 

KEY WORDS: Binary data; Bootstrap; Brownian motion; Conditional inference; Recursive residuals; Reliability. 

1. INTRODUCTION 

The problem of detecting a shift in a constant level of 
probability of success has been considered by many re-
searchers in the 1970s and 1980s (see, e.g., Carlstein 1988; 
Hinkley 1970; Pettitt 1979, 1980; Smith 1975; Worsley 
1983). Generally, the problem can be formulated as fol- 
lows: X I ,  . . . ,X ,  are independent Bernoulli random vari- 
ables with probabilities pl,  . . . ,p, of success, and it is 
known that for some K ,  0 < K 5 n ,  the p's have the fol- 
lowing relation: 

The null hypothesis to be tested is that K = n; that is, all 
of the p's are equal. Only one-sided alternatives are consid- 
ered. The applications in mind are mainly from reliability 
theory, where concern is about detecting deteoriation in a 
production, so that the probability of failure of produced 
items is supposed to be constant at a low lewel but at some 
time point, produced items suddenly have a higher failure 
probability. 

Pettitt's test and a weighted version thereof are reviewed 
in Section 2, and the likelihood-ratio based test is described 
in Section 3. The martingale approach to the changepoint 
problem is introduced in Section 4. The idea is very close to 
a solution to the problem of testing constancy of regression 
relationships over time, as given by Brown, Durbin, and 
Evans (1975). The difference is that the analysis is done 
conditionally on the total sum of successes. The involved 
filtration thus is nonstandard. 

In Section 5, seven fixed sample size tests are compared 
by simulation; two versions of Pettitt's test, four versions 
of the martingale-based test, and the likelihood ratio test. 
The results indicate that perhaps the martingale-based tests 
detect change faster. This is the theme of Section 6, where 
a simulation study is performed. The comparisons include a 
version of the classical cumulative sum (cusum) approach. 

2. PETTITT'S TEST 

The general setup is as follows: X I , .  . . ,X ,  are iid 
Bernoulli variables with P ( X i  = 1) = 1 - P ( X i  = 0 )  = 
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pi, i = 1, . . . ,n .  The null hypothesis is that p1 = . . . = p,, 
and the alternative is that for some K ,  0 < K < n , p l  = . . . = 
p, < p,+l = . . . = p,. This is a reasonable alternative in 
a reliability context, where interest is focused on detecting 
an increased probability of failure. 

Suppose for a moment that K is known; then there exists 
a uniformly most powerful unbiased test (Lehmann 1986, 
pp. 154-155). The test statistic is U = C,"',X i ,  and the 
test is performed conditional on T = Cy=l x i .  The result 
is Fisher's exact test for a 2 x 2 table. 

Let Si = c>~, 1 , . . . ,n. Then U = S ,  and T = S,,i = 

and, under the null hypothesis, 

that is, the hypergeometric distribution. 
It follows that under the null hypothesis, the first two 

conditional moments for k = 0 ,  . . . ,n ,  are 

and 

where p = S,/n. 
The test statistic is 

and its limiting conditional distribution under the null, as 
r;,n i in such a manner that n,K tends to a limit 
bounded from 0 and 1, is standard normal. Holst (1979) 
gave a strict derivation of this seemingly trivial statement 
(in a more general context). The test rejects the null hy- 
pothesis for large values of the test statistic. 

What if the time point for the shift is unknown? Then we 
have the changepoint problem, and the natural test statistic 
is 

R:) = max R ( k ,n) ,
l < k < n  
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which is a weighted version of the test statistic given by 
Pettitt (1980): 

R?) = max klj - S k  

llk5n 

It is well known that the exact null distribution of Ril) 
is the same as the null distribution of (a multiple of) 
the Kolmogorov-Smirnov two-sample test statistic (Steck 
1969). Thus numerous small sample tables and asymptotic 
results are available. The asymptotic distribution is the one 
of the maximum of a Brownian bridge on (0, 1). 

However, at sample sizes where tables stop (usually 
at sample sizes around loo), asymptotic results are still 
unreliable-mainly on the conservative side, causing low 
power. Therefore, relying on the bootstrap as soon as ta- 
bles are not available is recommended. The bootstrap is 
very simple to implement in the present situation, and it is 
used throughout. 

Pettit (1980) claimed that Ri2) is "generally inferior to" 
R,(1), a claim needing closer evaluation. 

3. THE LIKELIHOOD RATIO TEST 

Regarding the likelihood function in the shift model, 

L ( p , p f , 4 = p s " ( 1 - p )
k-S, 

P
IS,-S, ( 1 - P )  " - ~ - ( ~ n - S n ) ,  

as a function of three parameters, it is possible to test the 
hypothesis 

(no shift) with the likelihood ratio test. A difficulty is that 
ordinary asymptotic distributional results do not apply, and 
the exact distribution is awkward. The bootstrap approach 
poses no problems, however. The test statistic is 

Rk5)= 2( max sup In L(p, p', k) - sup In L(p, p, n)) 
l l k l n  O<plp '< l  O<p<l 

when the alternative is one sided. 

4. THE MARTINGALE APPROACH 

Consider the iid Bernoulli sequence XI ,  X2, . . . ,Xn and 
its corresponding cusum process S1,Sz,. . . ,Sn, the natural 
filtration is 

and it is obvious that {Sj,3,);is a submartingale. But we 
want to perform the analysis conditional on S,. Therefore, 
the filtration 

3;"'= 3 j  v o{Sn} = o{X1,. . . ,x,,S,}, 
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The sequence { S ~ , F ~ ~ ) } ; = ~is a submartingale because 

(a) 3jn)c 3jj;)l and Sj t 3jn) , j= 0 , . . . , n  - 1; (b) 0 < 
E(Sj) < m,j = 0 , . . . , n ;  and (c) E(S,+~F~"))2 Sj a.e. 

Doob's decomposition theorem states that {S,},"=, can 

be decomposed into a martingale {2~'"),3~")}';=, and 
" -

an increasing process {A:")};~~, where the latter is 
predictable-mealung that for each j,Ay) Fj"),. 

Theorem 1. The compensator A(") of the submartingale 
{S, ,3jn)}is given by the partition 

s, = 2,") +A:"), j = 0, . . . , n ,  

with 

( n ) - (n)  Sn-Sj-1Ab") = 0, Aj - AjP1 + 
n - j + l '  

j =  1,. . . ,n, 

and 

zjn'= S, -A:"', j = 0, . . . ,n. 

Proof: The proof is straightforward, by construction. 
The goal now is to show that {2jn)};, suitably normal- 

ized and time transformed, converges weakly to the stan- 
dard Wiener process on (0, 1) as n tends to infinity. Thus 
the variance function is needed. 

Theorem 2. The conditional variance function, given 
Sn, is, for j = 1 , .. . ,n, given by 

Pro05 The proof is provided in the Appendix. 
Suppose now that the changepoint occurs at time 6;that 

is, XI , . . . ,X, are iid Bernoulli variables with success prob- 
ability p, and X,+l,. . . ,Xn are iid Bernoulli variables with 
success probability p'. Let AZ/") = z/")- Z/:)~, j = 

1 , .. . , n .  Then 

In other words. {2jn)};=, has negative drift, because 

(p - p') < 0, whereas {2jn)- ~p)};=,+, has zero drift 
independent of the value of pl and p2.Therefore, a reason- 
able test statistic is 

-zp)
Rk4)= max 

I l k < ,  d m '  
However, we also consider its unweighted analog, 

-zp)
R?) = max Jml l k < n  

is appropriate. For completeness, let S o  = 0, = ~{STL),In the light of Theorem 2, the convergence of Ri3) under 
and 32)= {R,0}. the null hypothesis to the maximum of a Wiener process on 
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Table 1. Comparison of Power for Seven Tests, n = 50, p r  = .2, p2 = .4, Size 5%, One-Sided 

Martingale 

Pettitt Forward Reverse 
Change- Likelihood 

point Un weighted Weighted Un weighted Weighted Un weighted Weighted ratio 

25 

30 

35 

40 

45 

48 

No 


Table 2. Comparison of Power for Seven Tests, n = 100, pl = .2, p2 = .4, Size 5%, One-Sided 

Martingale 

Pettitt Forward Reverse
Change-

point Un weighted Weighted Un weighted 

(0, 1) is straightforward. (See general theorems on martin- 
gale convergence.) 

The test statistics RL3) and Ri4) are the forward ver-
sions of the martingale based test. The reversed versions 
are obtained by looking at failures in reverse order. Let 
Yi = 1-X,-i+l, i = 1 , . . . ,n, and apply the theory of this 
section to this new binary sequence. The resulting tests are 
not the same as the original tests. It turns out that the re- 
versed versions often are preferred; see the numerical com- 
parisons. 

5. NUMERICAL COMPARISONS 

Seven tests were compared in a simulation study: four 
variations of the martingale-based test (unweighted/un-
weighted and forward/backward), two versions of Pettitt's 
test (unweighted and weighted), and the likelihood ratio 
test. 

Bootstrap tables of critical values were constructed as 
follows. For fixed n and S,, 100,000 permutations of S, 1s 
and (n-S,) 0s were simulated, and for each combination, 
the value of the test statistic was computed. In this manner, 
generated values were regarded as an iid sample from the 

Likelihood 
Weighted Unweighted Weighted ratio 

test statistic under the null hypothesis. From this sample, 
the appropriate percentile was estimated and written to a 
table. The procedure was performed for n = 50,100, and 
200 and, in principle, for each 15 S, < n.A lazy attitude 
was taken, though, in that only requested table values were 
computed. 

The simulations were made on a Sun SPARCstation 5 
running Solaris 2.4 and on a Dell Pentium 90 MHz run-
ning MS-DOS 6.2. In both cases the programming language 
was FORTRAN 90, the NAG version. The traditional 16807 
congruential generator was used for random number gener- 
ation. The errors in the estimated probabilities are at most 
three units in the third decimal, with 95% confidence. 

5.1 Testing for a Changepoint 

Focus was on small p's and late changes, and on increases 
in the probability of success. 100,000 simulated samples 
were drawn for each combination of n = 50,100, and 200, 
and changes from p = .2 to .4, .6, and .8, representing small, 
medium and large shifts. Then the powers were estimated. 
The results are shown in Tables 1, 2, and 3, where figures 
in boldface represent the tests with highest power. Pettitt's 

Table 3. Comparison of Power for Seven Tests, n = 200, p i  = . 2  p2 = .4, Size 5%, One-Sided 

Martingale 

Change-
point 

Pettitt 

Un weighted Weighted 

Forward 

Un weighted Weighted 

Reverse 

Unweighted Weighted 
Likelihood 

ratio 
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Table 4. Bias x 100 of Seven Estimators of the Changepoint, n = 50, pl = .2, pz = .6, 
in the Case of Rejection of the Null Hypothesis, Size 5%, One-Sided 

Martingale 

Change-
point 

Pettitt 

Unweighted Weighted 

Forward 

Unweighted Weighted 

Reverse 

Unweighted Weighted 
Likelihood 

ratio 

Table 5. Mean Squared Error x 10 of Seven Estimators of the Changepoint, n = 50, pl = .2,p2 = .6, 
in the Case of Rejection of the Null Hypothesis, Size 5% , One-Sided 

Martingale 

Change-
point 

Pettitt 

Unweighted Weighted 

Forward 

Unweighted Weighted 

Reverse 

Unweighted Weighted 
Likelihood 

ratio 

test is symmetric, so only the forward version is given in 6. SEQUENTIAL TESTS 
the tables. 

The martingale versions, especially the weighted and re- One test was added to the tests considered in the previous 

verse version, are obviously most powerful in detecting late sections: a variation of the cumulative sums (cusum) test 
statistic. The conditional cusum test statistic for data of shifts. 
length M is defined by 

5.2 Estimation of the Changepoint 

If the test for a changepoint rejects the null hypothesis, Rj8' = rnax(0, R;?~+ X )  - C ) ,  j = 1,.. . ,M ,  
then estimating the location of the changepoint is of inter- 
est. A simulation study conducted along the same lines as 
in the case of testing gave the results displayed in Tables 4 
and 5. 

Table 6. Achieved Type I Error Probabilities With Bonferroni 

Limits, M = 50, p = .2 


i Test 	 ffI 

1. Pettitt's unweighted 	 ,027 
2. Pettitt's weighted 	 ,056 
3. Forward martingale, unweighted ,045 
4. Forward martingale, weighted ,035 
5. Reverse martingale, unweighted ,032 
6. Reverse martingale, weighted ,067 
7. Likelihood ratio 	 ,036 
8. Cusum 	 ,019 

Table 7. Achieved Type I Error Probabilities With Limits Given 

by a('), M = 50, p = .2 


i Test 	 f f i  

Pettitt's unweighted 

Pettitt's weighted 

Forward martingale, unweighted 

Forward martingale, weighted 

Reverse martingale, unweighted 

Reverse martingale, weighted 	 Fiaure 1. Probabilitv of Alarm Versus Time. M = 50. o = .2. la), ,  

~et t i i ' s ,  unweighted; (bj Pettitt's, weighted; (c) forward martingale, "i-Likelihood ratio 
Cusum 	 weighted; (d) forward martingale, weighted; (e) reverse martingale, un- 

weighted; (f) reverse martingale, weighted; (g) likelihood ratio; (4cusum. 



i 

Brostrom: Martingale Tests for Changepoint 

Table 8. Probability of Alarm and Conditional Expected Time 
to Alarm After a Shift From .2 to .4, M = 50 

Test Power Time to alarm 

1. Pettitt's unweighted 
2. Pettitt's weighted 
3. Forward martingale, unweighted 
4. Forward martingale, weighted 
5. Reverse martingale, unweighted 
6. Reverse martingale, weighted 
7. Likelihood ratio 
8. Cusum 

and 

where C is a suitably chosen constant, preferably close to 
Eo(X) .A possible data-dependent choice is C = S,/n. The 
null hypothesis is rejected at j = L if 

max R ) ~ )< r(8)
~ < J < L  

and 

R?) > 
where d8)is chosen to give the correct size of the test. 

Tests of the moving sums type are considered; that is, as 
time goes by, the latest observation is added and the oldest 
observation is deleted. If the length of the moving sum is M ,  
then it is assumed that the time horizon is (2M- l ) ,  and the 
tests are compared in a situation where a shift occurs at time 
( M  +1). Each test is applied M times, first on the observa- 
tions X I , .  . . ,XM, then on the observations X 2 , .  . . ,  X h ~ + l ,  

* .... .............
f , ......... ..... ......... ........ .... 
 .................... 
" ,  3 o  80 10 804 0  20 40 

IIrn mu 

(9) (h) 

Figure 2. Probability of Alarm Versus Time After a Shiff From .2to 
.4. M = 50. (a) Pettitt's, unweighted; (b) Pettitt's, weighted; (c) forward 
martingale, unweighted; (d) forward martingale, weighted; (e) reverse 
martingale, unweighted; (5 )  reverse martingale, weighted; (g) likelihood 
ratio; (h) cusum. 

1181 

Table 9. Probability of Alarm and Conditional Expected Time 
to Alarm After a Shift From .2 to .6, M = 50 

i Test Power Time to alarm 

1. Pettitt's unweighted .80 15 
2. Pettitt's weighted .66 13 
3. Forward martingale, unweighted .81 14 
4. Forward martingale, weighted .80 15 
5. Reverse martingale, unweighted .84 19 
6. Reverse martingale, weighted .69 13 
7. Likelihood ratio .73 15 
8. Cusum .59 19 

and so on. The last set to consider is XM,  . . . >X2111-1. Thus 
the first test is actually done under the null hypothesis, and 
the following ( M  - 1) tests are done when the null hypoth- 
esis is false but with different (decreasing) times for the 
shift. If the ( M +1)st test is applied, then the null hypothe- 
sis would again be true. Remember that the null hypothesis 
can be formulated as 

Ho: There has been no shift during the last M trials. 

The type I error is defined as "at least one rejection in 
the M individual tests, when Ho is true." The individ- 
ual tests clearly are not independent, and the degree of 
dependence varies from test to test. Therefore, it is no 
easy mater to decide which individual, single-test levels 
to choose. For a specific situation, M = 50 (and p = .2) 
under the null hypothesis, we zoomed in on the individ- 
ual levels by a sort of trial and error simulation: Aiming 
at a level of a = .1, the Bonferroni level was calculated 
to a,(') = ,1150 = ,002,i = 1 , .. .  ,50, and a simulation 
gave the total levels for the considered tests (the number of 
replicates in the simulation was 100,000 for each test); see 
Table 6. 

This was closer to the .05 level than to the target .l,so the 
subsequent corrections aimed at a = .05. It was necessary 
to choose test-specific levels, and the vector d o ) ,  with 

was finally chosen, giving rise to the results presented in 
Table 7. 

Table 10. Probability of Alarm and Conditional Expected Time 
to Alarm After a Shift From .2to .8, M = 50 

Test Power Time to alarm 

1. Pettitt's unweighted .99 10 
2. Pettitt'sweighted .98 9 
3. Forward martingale, unweighted .99 9 
4. Forward martingale, weighted .99 10 

5. Reverse martingale, unweighted 1.0 13 
6. Reverse martingale, weighted .98 9 
7. Likelihood ratio .98 9 
8. Cusum .96 15 

7 
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Figure 3. Probability of Alarm Versus Time After a Shift From .2to 
.6. M = 50. (a) Pettitt's, unweighted; (b) Pettitt's, weighted; (c) forward 
martingale, unweighted; (d) forward martingale, weighted; (e) reverse 
martingale, unweighted; ( f )  reverse martingale, weighted; (g) likelihood 
ratio; (h) cusum. 

Given (correct) rejection, it is of interest to have the re- 
jection as early as possible after the shift. Under the null 
hypothesis, the conditional distribution of the time of rejec- 
tion, given rejection, is almost uniform on (1,. . . ,(M-l)), 
as can be seen in Figure 1. 

Figure 4. Probability of Alarm Versus Time After a Shift From .2to 
.8. M = 50. (a) Pettitt's, unweighted; (b) Pettitt's, weighted; (c) forward 
martingale, unweighted; (d) forward martingale, weighted; (e) reverse 
martingale, unweighted; ( f )  reverse martingale, weighted; (g) likelihood 
ratio; (h) cusum. 
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The powers of the tests under the alternative of a shift 
from .2 to .4 are shown in Table 8. The last column shows 
the conditional expected time after the shift at which re- 
jection occurs, given rejection after (or at) the shift and no 
rejection before the shift. 

The conditional distribution of the times to alarm under 
the shift from .2 to .4 alternative is shown in Figure 2. As 
in Figure 1, the value at t = 0 is actually attained under the 
null hypothesis. It is thus an estimate of the "single-stage" 
type I error probability. 

In Tables 9 and 10, the corresponding figures are shown 
for a moderate and a huge shift, from p = .2  to p = .6 and 
p = .8. Figures 3 and 4 display the corresponding condi- 
tional distributions of the time to alarm. 

7. CONCLUSION 

To summarize, the martingale approach is promising, 
both in a sequential framework and in a fixed sample size 
setting. If a quick detection is wanted, then the weighted 
versions are preferred; the unweighted versions have a 
higher overall power. Pettitt's claim that weighted versions 
are generally inferior is not supported. The likelihood ratio 
test does better than expected in the sequential approach. 
Finally, the cusum test performs surprisingly poorly. How- 
ever, it is implemented in a nonstandard way here, which 
may explain its bad performance. 

APPENDIX: PROOF OF THEOREM 2 

To increase readability, here the superscript (n )of Z is tem- 
porarily dropped. For j = 1,.. . ,n, we have 

The last equality follows from the martingale property 

Taking conditional expectations (with respect to F;,!"),)throughout 
gives 

because 



Brostrom: Martingale Tests for Changepoint 

Conditional on F;,(f),,AZ, is a 0-1 random variable minus its ex- 
pected value. Therefore, 

Here the conditioning is on the wrong sigma field. However, this 
is easily resolved, utilizing standard results on switching sigma 
fields (see, e.g., Chung 1974, thm. 9.1.5, p. 304). We have, with 
yz = 2: - z:-~, 

The first equality follows because E(Y, IF,") )E Fj:),, when i > 
1; the second is the switching sigma fields theorem; and the third 
follows from the fact that 

The remaining calculations constitute a simple exercise with the 
hypergeometric distribution. Given a population of size n, consist-
ing of S, 1s and ( n  - s,) Os, ( n  - i + 1 )  items are randomly 
drawn without replacement. Find E ( X / ( n  - i + 1){1 - X/  
( n  - i + I ) ) ) ,where X is the number of drawn items of type 
I. It follows that 

and 

Taking the difference between the right sides of (A.l) and (A.2) 
gives 

Finally, for j = 1, .. . ,n, we get 

v ( z : ~ ) F : ~ ) )  n n - i  
= ~(l-n),E 

which completes the proof. 

[Received November 1995. Revised July 1996.1 
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